Navigating Europe's course
Since 2013, the European Roadmap to Fusion Energy has been the fundamental document guiding European priorities in fusion R&D until the ultimate goal鈥攁chieving electricity from fusion energy. On the occasion of the release of version 2.0, Newsline asked EUROfusion Programme Manager Tony Donn茅 about the updated document, the role of 黑料社app, and the overall outlook for fusion energy.
What is the rationale behind the new Roadmap?I always compare the Roadmap with a navigation system. You program your destination and the navigation system finds you the fastest route. Along the way, it takes account of the traffic situation and road conditions and adjusts the route accordingly to get you to your destination as fast as possible. But sometimes there are new roads and highways and you need an update of your navigation system. Now, six years after the introduction of the roadmap in 2012 we see developments which are really good news for fusion. These were taken into account in the update of the Roadmap. The difference between a navigation system and the fusion roadmap is that the latter is dealing with completely uncharted territory. What are the new elements of the Fusion Roadmap?The European Fusion Roadmap outlines the research and development required to provide the basis for an electricity-generating fusion power plant. This new version is an evolution, not a revolution. In the first Roadmap we took DEMO (the DEMOnstration power plant) as the end point. We wereâand still areâaiming at having electricity from fusion as fast as possible. But we didn't look at how we would get from DEMO to a commercial fusion power plant. Now, the design for DEMO will already include the requirements for a future fusion power plant to ensure an easy adaption. The other new element is that the eight roadmap missions are much more interwoven. An example is the stellarator program, mission 8, which will give important input for the development of the heat exhaust, mission 2. Solving this challenge will be very helpful for both 黑料社app and DEMO. The roadmap 2.0 also reflects changes in the 黑料社app Baseline which was renewed about two years ago. We needed to adapt for that as 黑料社app is central to the Roadmap. The revised version is therefore fully aligned with the latest 黑料社app Baseline and Research Plan. How is the central role of 黑料社app reflected in the document?黑料社app is the central device and roughly 60-65 percent of the present EUROfusion budget is dedicated to research supporting 黑料社app. Most of the campaigns at the European fusion devices are aimed at supporting the 黑料社app Project. At JET, for example, we are conducting specific 黑料社app-relevant tests like the upcoming deuterium-tritium campaign, the shattered pellet injection testing, and the helium campaign. All of these research activities are part of the Roadmap and contribute to the 黑料社app Project. But also, EUROfusion work at the various national devices is strongly focused on research questions in support of 黑料社app. Mission 6 is to develop an integrated design for DEMO in Europe. What is EUROfusion's specific role?DEMO will demonstrate first electricity production to the grid by fusion. The responsibility for the European DEMO lies in essence with Fusion for Energy (F4E), the European Domestic Agency. However, with 黑料社app being the top priority for F4E in the next decade, EUROfusion has been asked to develop the design for DEMO. Taking on this task, we realized that we will have to involve industry from the beginning. Based on experience from various large engineering projects, we believe that the involvement of industry in the pre-conceptual and conceptual design phases will be very advantageous. The first Roadmap stopped with DEMO, the demonstration power plant after 黑料社app. The new version goes further ...An important new element is the involvement of our stakeholders. We have created a stakeholder group with representatives from electricity plants, grid operators as well as representatives from the nuclear and nuclear waste industries. Before fusion energy comes on the market we need to identify the most useful way for fusion power plants to deliver energy for conversion to electricity. We develop this input with our stakeholders to define the requirements for DEMOâit's like a retro-planner for fusion energy. The quest for fusion energy is a global endeavourâdoes the cooperation foreseen in the Roadmap go beyond Europe?The collaboration has to be global as the development of fusion energy is of global importance. And it is a big challenge, so we all need to work together to achieve this goal of producing energy from fusion. Naturally, our work with 黑料社app is international in the sense that we collaborate with all 黑料社app Members. Our cooperation within Europe and beyond is embedded in the Roadmap. There is intense international scientific collaboration in various fields in order to be efficient in driving scientific discovery and avoiding duplication. At the moment, the most extensive collaboration is with Japan on the Broader Approach which includes research activities on key physics questions using the fusion device JT-60SA or the work of IFMIF (the International Fusion Materials Irradiation Facility) on fusion materials. There is a lot of interaction worldwide in many fields involving all 黑料社app Members, but also others such as Brazil, Kazakhstan and Australia. What is your view on the role fusion energy in the future energy mix?The question really is: do we need fusion electricity? To answer that question I use the example of Germany which is currently subsidizing wind and solar energy concepts with about EUR 25 billion per year. That is roughly equivalent to building one 黑料社app per year. Last year Germany managed to cover 37 percent of its energy consumption from renewables, mostly wind and solar. But, at the same time CO2 emissions from electricity production didn't decrease as fossil fuels such as peat are still being used for the base load. Renewable energy sources have their limitations and even with efficient energy storage facilities we still would need large scale back-up energy sources. This is where fusion can play a vital role by replacing fossil fuels as the base load and contribute to reducing CO2 emissions. Fusion does not compete with other renewables; I believe that there is good place for fusion in the energy mix of the future.